HORIZONTAL GAS-LIQUID SEPARATOR CALCULATOR

Simon Learman

B

Blackmonk Engineering Ltd www.blackmonk.co.uk

Contents

Contents	2
Introduction	
System Diagram	3
Calculation Inputs	
Calculation Outputs	4
Gas-Liquid Separator Design	4
Maximum Vapour Velocity	4
Separator Sizing Factor, K	5
Volumetric Flow Rates	6
Mixture Density	
Separator Diameter	6
Separator Inlet Nozzle Design	7
Liquid Hold-Up Volume	8
Separator Vessel Tan-to-Tan Length	8
Vessel Length:Diameter Ratio	8
Calculation of Horizontal Gas-Liquid Separator	8
Nomenclature	10
Example	11
Description:	11
Requirement:	11
Solution:	11
Horizontal Gas-Liquid Separator Calculator Screenshot:	12

Introduction

This document describes the basis and operation of the Blackmonk Engineering Horizontal Gas-Liquid Separator Calculator.

The calculation methodology is based on that described in Chapter 8 of "Rules of Thumb for Chemical Engineers", 3rd Edition, Carl Branan, Gulf Publishing.

The calculator determines the vessel diameter and tan-to-tan length required to separate liquid from gas/vapour with a specified liquid hold-up time.

The calculator determines the Souders-Brown separator sizing factor automatically in addition to the maximum vapour velocities in the vessel and through the inlet nozzle.

System Diagram

Calculation Inputs

The following parameters are user specified inputs to the calculation:

Input	Description	Units
Liquid flow rate	Mandatory user specified liquid mass flow rate to the separator	kg/hr
Vapour flow rate	Mandatory user specified vapour mass flow rate to the separator	kg/hr
Liquid density	Mandatory user specified liquid density	kg/m ³
Vapour density	Mandatory user specified vapour density	kg/m ³
Liquid hold-up time	Mandatory user specified liquid hold-up time required in the vessel	min

Calculation Outputs

The following parameters are calculated by the software and displayed to the user:

Output	Description	Units
Liquid volumetric flow rate	Volumetric flow rate of liquid entering the	m3/hr
	separator vessel	1110/111
Vapour volumetric flow rate	Volumetric flow rate of vapour entering the separator vessel	m3/hr
Mixture density	Density of the mixed liquid and vapour stream entering the separator	kg/m ³
Separation factor	Horizontal gas-liquid separator separation factor	N/A
Separator sizing factor	Horizontal gas-liquid separator Souders-Brown separator sizing factor	m/s
Maximum vapour velocity	Maximum vapour velocity in the vessel	m/s
Minimum gas flow area	Minimum area required to maintain gas velocity at the maximum vapour velocity	m ²
Minimum separation area required	Minimum cross sectional area of the vessel required for separation based on the maximum vapour velocity	m ²
Minimum separator diameter	Minimum diameter of the vessel required for separation based on the maximum vapour velocity	m
Maximum inlet nozzle velocity	Maximum allowable velocity in the vessel inlet nozzle based on maximum momentum criteria	m/s
Minimum inlet nozzle velocity	Minimum allowable velocity in the vessel inlet nozzle based on minimum momentum criteria	m/s
Maximum inlet nozzle diameter	Inlet nozzle diameter calculated on the basis of the minimum inlet nozzle velocity criteria	m
Recommended inlet nozzle size	Maximum inlet nozzle diameter rounded up to the nearest standard pipe size	inch
Liquid hold-up volume	Volume of liquid corresponding to the required liquid hold-up time at the specified liquid flow rate	m ³
Vessel length tan to tan	Distance between the tan lines of the vessel i.e. the vessel cylindrical length	m
Recommended separator diameter	Minimum separator diameter rounded up to the nearest 150 mm increment	m
Vessel L:D	The ratio of the vessel tan to tan length to the recommended separator diameter	N/A

Gas-Liquid Separator Design

The calculator sizes gas-liquid separators on the basis of maximum gas (or vapour) velocity within the vessel as given by the Souders-Brown equation.

Maximum Vapour Velocity

The maximum gas (or vapour) velocity is given by the Souders-Brown equation below:

$$u_{vapmax} = K \left[\frac{(\rho_l - \rho_v)}{\rho_v} \right]^{0.5}$$
 Equation 1

Separator Sizing Factor, K

The Souders-Brown Separator Sizing Factor, K, is determined from the following correlation:

$$K = \left(\frac{1.25}{3.281}\right) exp(A + Bln(S_f) + Cln(S_f)^2 + Dln(S_f)^3 + Eln(S_f)^4 + Fln(S_f)^5)$$
 Equation 2

Where:

A = -1.942936

B = -0.814894

C = -0.179390

D = -0.0123790

E = 0.000386235

F = 0.000259550

The separation factor, S_f is calculated using the following equation:

$$S_f = \left[\frac{m_l}{m_v}\right] \left[\frac{\rho_v}{\rho_l}\right]^{0.5}$$
 Equation 3

The Souders-Brown Separator Sizing Factor correlation is based on the data presented in the chart below for 5% of the liquid to be entrained in the vapour stream. This is considered adequate for normal design.

Figure 1: Separator Sizing Factor Chart

Volumetric Flow Rates

The volumetric flow rates of the liquid and vapour components of the feed stream to the separator are calculated using the equations below:

$$Q_l = \frac{m_l}{\rho_l}$$
 Equation 4

$$Q_v = \frac{m_v}{\rho_v} \qquad \text{Equation 5}$$

Mixture Density

The density of the mixed feed stream is calculated using:

$$\rho_{mix} = \frac{m_l + m_v}{Q_l + Q_v}$$
 Equation 6

Separator Diameter

The minimum gas flow area required is calculated using:

$$A_{vmin} = \frac{Q_v}{u_{vapmax}}$$
 Equation 7

The total minimum separator cross-sectional area is evaluated using the following relationship:

$$A_{totalmin} = \frac{A_{vmin}}{0.2}$$
 Equation 8

From which the minimum required separator diameter is determined:

$$D_{min} = \left(\frac{4A_{totalmin}}{\pi}\right)^{0.5}$$
 Equation 9

The recommended separator diameter is determined by rounding up the calculated minimum separator diameter to the nearest 150 mm increment to be consistent with standard rolled plate dimensions.

$$D_{sep} = \left[Roundup\left(\frac{D_{min}}{0.150} \right) to \ whole \ number \right] \times 0.150$$
 Equation 10

Separator Inlet Nozzle Design

The separator inlet nozzle is sized based on the following correlations for the maximum and minimum nozzle velocities:

$$u_{nozmax} = \frac{121.98}{\rho_{mix}^{0.5}}$$
 Equation 11

$$u_{nozmin} = \frac{73.19}{\rho_{mix}^{0.5}}$$
 Equation 12

The maximum inlet nozzle diameter is then determined from:

$$d_{inlet \ max} = \left[4\left(\frac{Q_l + Q_v}{\pi u_{normin}}\right)\right]^{0.5}$$
 Equation 13

The recommended inlet nozzle size is determined by selecting the next largest standard pipe size based on the maximum inlet nozzle diameter.

Liquid Hold-Up Volume

Liquid hold-up volume is calculated based on the liquid flow rate to the separator and the specified required liquid hold-up time.

$$V_l = Q_l \tau$$
 Equation 14

Separator Vessel Tan-to-Tan Length

The tan-to-tan length of the separator vessel is given by:

$$L = \frac{4V_l}{0.8\pi D_{sep}^2}$$
 Equation 15

Vessel Length:Diameter Ratio

It is recommended that the vessel length to diameter ratio is maintained between 3 and 5.

$$3 \le L$$
: $D_{sep} \le 5$ Equation 16

Calculation of Horizontal Gas-Liquid Separator

The calculation routine is described in the following steps:

- 1. Calculate liquid and vapour volumetric flow rates using Equation 4 and Equation 5
- 2. Calculate mixture density using Equation 6
- 3. Calculate Separation Factor, S_f using Equation 3
- 4. Calculate Separator Sizing Factor, K using Equation 2
- 5. Calculate maximum vapour velocity using Equation 1
- 6. Calculate minimum gas flow area required using Equation 7
- 7. Calculate minimum separator cross-sectional area required using Equation 8
- 8. Calculate minimum separator diameter using Equation 9
- 9. Calculate recommended separator diameter using Equation 10
- 10. Calculate maximum and minimum inlet nozzle velocities using Equation 11 and Equation 12
- 11. Calculate the maximum inlet nozzle diameter using Equation 13
- 12. Determine the recommended inlet nozzle diameter based on standard pipe sizes
- 13. Calculate the liquid hold-up volume using Equation 14

- 14. Calculate the vessel tan-to-tan length using Equation 15
- 15. Calculate the vessel length:diameter ratio using Equation 16
- 16. Generate warning if L:D < 3 or L:D > 5

Nomenclature

 $A_{totalmin}$ = Minimum separator cross-sectional area required (m²) $A_{vmin} = \text{Minimum gas flow area required (m}^2)$ d_{inlet} = Recommended inlet nozzle diameter (m) $d_{inlet max} = Maximum inlet nozzle diameter (m)$ $D_{min} = Minimum separator diameter (m)$ $D_{sep} =$ Recommended separator diameter (m) K =Souders-Brown Separator Sizing Factor (m.s⁻¹) L = Vessel tan-to-tan length (m) m_l = Liquid mass flow rate to separator (kg.s⁻¹) $m_v = \text{Vapour mass flow rate to separator (kg.s}^{-1})$ $Q_l = \text{Liquid volumetric flow rate to separator } (m^3.s^{-1})$ $Q_v = \text{Vapour volumetric flow rate to separator } (\text{m}^3.\text{s}^{-1})$ S_f = Separation factor (dimensionless) $u_{nozmax} = Maximum velocity through separator inlet nozzle (m.s⁻¹)$ $u_{nozmin} = Minimum velocity through separator inlet nozzle (m.s⁻¹)$ $u_{vapmax} = Maximum vapour velocity in separator (m.s⁻¹)$ V_l = Liquid hold-up volume in separator (m³) $\rho_l = \text{Liquid density (kg.m}^{-3})$ $\rho_v = \text{Vapour density (kg.m}^{-3})$ $\rho_{mix} = \text{Mixture density (kg.m}^{-3})$ $\tau = \text{Liquid hold-up time (s)}$

Example

The following example was adapted from the GPSA Data Book Example 7-1 page 7-8.

Description:

A horizontal separator is required to handle 76320 kg/hr of gas with a density of 33.4 kg/m³. The feed to the separator also contains 2500 kg/hr of liquid with a density of 500 kg/m³. A liquid hold-up time of 900 minutes is required.

Requirement:

Determine the separator diameter and length required.

Solution:

Calculated Separator Sizing Factor, K = 0.1107 m/s

Calculated maximum vapour velocity, $u_{vapmax} = 0.414 \text{ m/s}$

Calculated minimum separator diameter, $D_{min} = 3.125 \text{ m}$

Recommended separator diameter, $D_{sep} = 3.150 \text{ m}$

Calculated separator tan-to-tan height, L = 12.030 m

Calculated L:D = 3.82

Horizontal Gas-Liquid Separator Calculator Screenshot:

INPUTS

Liquid flow rate	m_l	2500	kg/hr
Vapour flow rate	m_{ν}	76320	kg/hr
Liquid density	ρ_{l}	500	kg/m3
Vapour density	ρ_{V}	33.4	kg/m3
Liquid hold-up time	$ au_{l}$	900	min

OUTPUTS

Liquid volumetric flow rate	Q_{l}	5.00	m3/hr
Vapour volumetric flow rate	Q_{v}	2285.03	m3/hr
Mixture density	ρ_{mix}	34.42	kg/m3
Separation factor	S_f	0.0085	
Separator sizing factor	K	0.1107	m/s
Maximum vapour velocity	U _{vapmax}	0.414	m/s
Minimum gas flow area	A_{vmin}	1.53407	m2
Minimum separation area required	A_{totalmin}	7.67037	m2
Minimum separator diameter	D_{min}	3.125	m
Maximum inlet nozzle velocity	U _{nozmax}	20.79	m/s
Minimum inlet nozzle velocity	$\mathbf{U}_{\text{nozmin}}$	12.48	m/s
Maximum inlet nozzle diameter	$d_{\text{inlet max}}$	0.255	m
Recommended inlet nozzle size	d_{inlet}	10	inch
Liquid hold-up volume	V_{l}	75.000	m3
Vessel length tan to tan	L	12.030	m
Recommended separator diameter	D_sep	3.150	m
Vessel L:D	L:D	3.82	